Lead and Copper Corrosion: What have we Learned Since the LCR

Darren A. Lytle Michael R. Schock

Water Supply and Water Resources Division
Office of Research and Development
U. S. Environmental Protection Agency
Cincinnati, Ohio

Organization

- # Recent research advances
 - Lead (brief)
 - Copper
- # Regulatory balancing act
- # Future research needs

Lead

"New" Lead (and Copper)Research USEPA Studies Since 1991

- # Effect of ion exchange home water softeners on lead and copper corrosion
- # Use of aeration for corrosion control
- # Effect of brass alloy composition on the release of metals from the brass (pH, orthophosphate)
- # Corrosion control for small systems (silicates, pH adjustment, aeration)
- # PbO₂ lead IV
- # Scale analysis database

Aeration for Corrosion Control

- # Strip CO₂ from water
- # Increase in pH, decrease in DIC
- # Decrease in metal solubility
- # Simple systems
- # Reliable, require little attention
- # No addition of chemicals

Aeration for Corrosion Control Decision Tree

- # pH<7.2 and DIC> 10 mg C/L? Maybe
- # Calcium hardness saturation state at goal pH? Additional treatment
- # Mn > 0.05 mg/L, Fe < 0.2 mg/L? Additional treatment
- # Radon > 3000 pCi/L? Additional benefit

Copper

Copper Effect of Oxidation-Reduction Potential

EMF-pH Diagram for Cu-H₂O-CO₂ System

Cu species = 1.3 mg/L; DIC = 4.8 mg C/L I=0; 25°C

Copper(II) Solubility at Different DIC Levels Compared to Copper(I)

Copper Effect of Stagnation Time

Indian Hill, Ohio, Groundwater Copper Tubing--Softened Water, DIC=75 mg C/L

Bias from Sampling Scheme?

Unsoftened water, copper going DOWN

Softened water, copper going UP

One Age Effect on Stagnation Profile

25 mg/L SiO₂, pH 7.5, Cl₂ + DO, Copper pipe, Tap

Conceptual Stagnation Profiles

- Pure Radial Diffusion Cont rol
- Diffusion Barrier or Oxidation Rate Limit
- Oxidant Limit ed Reversion t o Ou(I)

Hours Standing

CopperGeneral Chemistry and Aging

Copper Leaching Rate versus Age for California Study

Predict ed Copper(II) Solubilit y by Different Sets of Solubilit y Constants

DIC= 4.8 mg C/L, $I = 0.005, 25^{\circ}$ C

Effect of Molar Surface on Solubility

Copper(II) Solubility at Different DIC Levels Compared to Copper(I) Solubility

USEPA Studies

- # Solubility/scale formation phenomena with copper pipe
- # Effect of DIC, pH, Orthophosphate
 - Speciation
 - Solubility
 - Chlorine consumption
 - Mineralogy of corrosion deposits

USEPA Lab Experiments

- # pH 6.5, 7.0, 8.0, 9.0
- # DIC's 5, 10, 25, 50 mg C/L
- # Orthophosphate 0 or 3.0 mg PO₄/L
- # Dissolved Oxygen= approx.. 6-7.5
 mg/L
- # Chlorine residual maintained up to 1 mg/L
- #5 mg/L Calcium in most expts...

Copper Solubility, pH 9

Effect of Orthophosphate

Effect of Orthophosphate on Aged Copper Solubility for DIC=4.8 mg/L

Phosphate Effect on Newer Copper Pipe for DIC = 14.4 mg C/L

Effect of Orthophosphate at pH 9 3.0 mg PO₄/L Dosage, new pipe

Precipitation Studies

DIC=10 mg C/L, I=0.01, 25°C

Orthophosphate Effect on Scale Evolution at High DIC

CuO, $Cu_2(OH)_2CO_3$

Orthophosphate Effects-Summary

- # Tends to sorb to surface or form thin film.
- # Inhibits oxidation rate of Cu(I) to Cu(II)
- # Inhibits growth of protective CuO at high pH
- # Inhibits growth of malachite at low pH
- # May reduce copper solubility at low pH, but increase it at high pH

Significance of Metastability

- # Copper levels controlled by minerals that are dynamically changing
- # Certain anions drastically change nature of passivation film and copper release
- # Copper levels normally measured represent disequilibrium: biases could be + or -
- # Speciation models need adjustment numerically and in components

Significance of Metastability

- # Short-term reductions in copper may conflict with optimum long-term treatment
- # Optimal pH/DIC conditions to foster fastest malachite formation largely unknown

Future Research Needs

- # What do "short and long term" mean?
- # What are the critical levels of each anion?
- # What if more than OH⁻ + 1 anion added?
- # Role of pH in anion effects?
- # Can we practically speed up aging?

- # Can changes in coagulation type (e.g. alum to ferric chloride, or PACI) affect lead levels?
 - Mechanism?
 - ! Scale solubility?
 - ! Destabilization by charge differences?

What is the point of practical tradeoff between pH stability (buffer intensity) and possible increases in plumbosolvency or Pb release through added carbonate complexation?

- # To what extent does orthophosphate or polyphosphate(s) interact with residual aluminum?
 - Reduction of effectiveness of ortho-P for Pb or Cu control?
 - Formation of Al deposit reducing release
 - Adverse effect on hydraulics and aesthetics

Corollary questions:

- Does a solid material form?
- Does the material have detrimental hydraulics effects?
- Which species are involved?
- Can the films be removed without detrimental effects on Pb or Cu?
- If Al-based, does type of coagulant matter?

- # Are the products of chlorination or "advanced" oxidation of NOM more or less detrimental to lead release than "naturallyoccurring" NOM species?
 - Is O₃ without BAF detrimental?
 - Does the effect vary if pH/DIC is used as opposed to phosphate dosing for control.

The Regulatory Balancing Act Fe/Mn interactions

- # Do high redox potentials caused by high DO levels (post O₃) or Fe/Mn oxidation favor rapid passivation by PbO₂?
- # What are the relative advantages and disadvantages of oxidation and physical removal vs. sequestration for different waters

- # What are the impacts of different types of phosphates on the passivation and lime leaching from cement pipes and linings?
 - Phosphate chemical species effects
 - Background water chemistry effects?

- # How important is overall Pb/Cu control optimization to levels beyond drinking water requirements to satisfy wastewater discharge and sludge limits?
- # Is more wastewater process research needed to optimize P, Zn, Cu, etc. removal?
- # What are the impacts of different treatment approaches on hot water systems?

Significance of Metastability

- # Short-term reductions in copper may conflict with optimum long-term treatment
- # Optimal pH/DIC conditions to foster fastest malachite formation largely unknown

Saturation Index

(Cu(OH)₂ or CuO)

$$Cu(OH)_2 + 2H^+ \oplus Cu^{2+} + 2H_2O$$

$$SI = \log \frac{\{Cu^{2+}\}}{\{H^+\}^2}$$

Saturation Index (Malachite)

 $Cu_2(OH)_2CO_3 + 2H^+ \oplus 2Cu^{2+} + CO_3^{2-} + 2H_2O$

$$SI = \log \left\{ \frac{\{Cu^{2+}\}^2 \{CO_3^{2-}\}}{\{H^+\}^2} \right\}$$

(Metastable) Ion Activity Products

Lead and Copper Rule: US

- # First proposed: 1988
- # Covers all public water supplies and non-transient non-community supplies
 - 75,000+ total public water systems
 - 680+ over 50,000 population
 - Administered at State level for 49 of 50
- # Substantially revised and promulgated: 1991

Regulatory Approach

- # "Treatment Technique" rather than hard MCL for large systems
- # Sampling scheme intentionally biased for site selection

Regulatory Approach

- # "Action Level" is trigger
 - Optimization of corrosion control (large)
 - Corrosion control studies and treatment to meet 0.015 mg/L for others
 - Public education
 - Possible service line replacement
- # Must meet other SDWA regulations at same time

Sulfate Effects-Summary

- # May form basic sulfate solid preferentially
- # May interfere with normal aging of cupric hydroxide
- # Tends to make cuprosolvency less responsive to pH above about pH 7.5 or 8

Speciation Modeling

- **# WATEQX program**
 - Compute Saturation Indices
 - Compute Ion Activity Products
- # Refine choice of species
- # Refine choice of constants
 - Solubility
 - Formation (aqueous species)

Sulfate Effect at High pH (Coupon Study) DIC=11-18 mg C/L, SO₄=60-120

